If f(x) = 5x, what is f–1(x)?

Answer:
[tex]f^{-1} (x)=\frac{1}{5}x[/tex]
Step-by-step explanation:
we have
[tex]f(x)=5x[/tex]
Let
y=f(x)
[tex]y=5x[/tex]
Exchange the variables x for y and y for x
[tex]x=5y[/tex]
isolate the variable y
[tex]y=x/5[/tex]
Let
[tex]f^{-1} (x)=y[/tex]
[tex]f^{-1} (x)=\frac{1}{5}x[/tex]
Answer:
Option c
Step-by-step explanation:
Give that f(x) = 5x
We have to choose among the four options which is the inverse of f
Let us try directly from f(x)
[tex]f(x) = 5xy =5x[/tex]
Divide both sides by 5
[tex]x = \frac{y}{5}
Verify:
Let us do composiition of function as
\\[tex]f(f^{-1} (x))=f(\frac{1}{5}x)\\ =5(\frac{1}{5}x)\\\\=x[/tex]=\frac{1}{5} x[/tex]
WE find that our answer is right