Solve for X in the equation

Answer:
Fourth option: x=1±√47
Step-by-step explanation:
This is a quadratic equation, then we must equal to zero: Subtracting both sides of the equation x², 5x, and 39:
[tex]2x^{2}+3x-7-x^{2}-5x-39=x^{2}+5x+39-x^{2}-5x-39[/tex]
Subtracting like terms:
[tex]x^{2}-2x-46=0[/tex]
Applying the quadratic formula:
[tex]ax^{2}+bx+c=0; a=1, b=-2, c=-46[/tex]
[tex]x=\frac{-b+-\sqrt{b^{2}-4ac}}{2a}\\ x=\frac{-(-2)+-\sqrt{(-2)^{2}-4(1)(-46)}}{2(1)}\\ x=\frac{2+-\sqrt{4+184}}{2}\\ x=\frac{2+-\sqrt{188}}{2}\\ x=\frac{2+-\sqrt{4(47)}}{2}\\ x=\frac{2+-\sqrt{4}\sqrt{47}}{2}\\ x=\frac{2+-2\sqrt{47}}{2}\\ x=\frac{2}{2}+- \frac{2\sqrt{47}}{2}\\ x=1+-\sqrt{47}[/tex]
Answer:
Choice d is correct answer.
Step-by-step explanation:
Given equation is:
2x² + 3x - 7 = x² + 5x + 39
Move all the terms of all equation using subtraction,we get
2x² + 3x - 7 - x² - 5x - 39 = 0
x² - 2x - 46 = 0 is quardatic equation.
ax²+bx+c = 0 is general quadratic equation.
x = ( -b±√b²-4ac) / 2a is qudratic formula.
comparing quadratic equation with general quadratic equation, we get
a = 1 , b = -2 and c = -46
putting above values in quadratic formula, we get
x = ( - (-2)±√(-2)²-4(1)(-46) ) / 2(1)
x = ( 2 ±√4+184) / 2
x = (2±√188) / 2
x = ( 2±√4×47) / 2
x = (2±2√47 ) / 2
x = 2( 1±√47) /2
x = 1±√47 is the solution of given equation.