Respuesta :

Answer:

cos∅=-[tex]\frac{\sqrt{85} }{11}[/tex]

tan∅ -[tex]-\frac{6\sqrt{85} }{85}[/tex]

Step-by-step explanation:

sin∅ =[tex]\frac{6}{11}[/tex]

we know that

cos∅  =[tex]\sqrt{1-sin^2∅  }[/tex]

plugging the value of sin∅  gives

[tex]\sqrt{ 1-(\frac{6}{11})^2\sqrt{ 1-(\frac{36}{121})\\\sqrt{\frac{85}{121} } \\\frac{\sqrt{85} }{11\\}[/tex]

therefore  cos∅=-[tex]\frac{\sqrt{85} }{11}[/tex]

cos∅  is negative since sec∅  is negative

tan∅ =  [tex]\frac{sin∅}{cos∅}[/tex]

           =[tex]\frac{\frac{6}{11} }{\frac{\-sqrt{85}  }{11} } \\[/tex]

            on simplifying it ,we get

    =-[tex]\frac{6}{\sqrt{85} }[/tex]

rationalizing it we get

-[tex]-\frac{6\sqrt{85} }{85}[/tex]

Answer: a

Step-by-step explanation: edge 2021