Respuesta :

Answer:

[tex]f^{-1}(x)=[/tex]=[tex]-\frac{x+4}{5}[/tex]  

Step-by-step explanation:

In order to find the inverse of a function ,we need to follow the some steps

Step1: taking f(x) = y

      y= -5x-4

Step2:  Interchange x and y

                  x= -5y-4

Step3: Solving equation for y,we get

         Adding 4 both sides

    -5y = x+4

Divide by -5 both sides

[tex]y=-\frac{x+4}{5}[/tex]      

or

[tex]f^{-1}(x)=[/tex]=[tex]-\frac{x+4}{5}[/tex]    

Answer:

f⁻¹(x) = -(x+4) / 5

Step-by-step explanation:

Given function is :

f(x) = -5x-4

We have to find the inverse of given function.

Step 1.  Put y = f(x) in given function

y = -5x-4

Step 2. Add 4 to both sides of above equation

y+4= -5x-4+4

y+4 = -5x

Step 3.Divide by -5 to both sides of above equation

y+4 / (-5) = -5x / (-5)

-(y+4) / 5 = x

Step 4 . Swap sides

x = -(y+4) / 5

Step 5. Put x = f⁻¹(y) in above equation

f⁻¹(y) = -(y+4) / 5

Step 6. replace y with x

f⁻¹(x) = -(x+4) / 5 which is the inverse of f(x) = -5x-4.