When x increases from a to a + 2, y increases by a factor of 1 4 . For which functions is this statement true? A) y = 3(2)x B) y = 2x + 5 C) y = 7(0.5)x D) y = 1 2 x - 4

Respuesta :

Answer:

Option: C is correct.

[tex]y=7\times (0.5)^x[/tex]

Step-by-step explanation:

We are given that when x increases from 'a' to 'a+2' then y must increase by a factor of 1/4=0.25.

i.e. when x=a and x'=a+2.

then [tex]\dfrac{y'}{y}=0.25[/tex] where y' is the function after putting x' to the old function.

A)

[tex]y=3\times 2^x[/tex]

when x=a

[tex]y=3\times 2^a[/tex]

when x'=a+2

[tex]y'=3\times 2^{a+2}\\\\y'=3\times 2^a\times 2^2\\\\y'=3\times 2^a\times 4\\\\y'=4\times y\\\\\dfrac{y'}{y}=4\neq \dfrac{1}{4}[/tex]

Hence, option (A) is incorrect.

B)

[tex]y=2x+5[/tex]

when x=a

[tex]y=2a+5[/tex]

when x'=a+2

[tex]y'=2(a+2)+5\\\\y'=2a+4+5\\\\\\y'=y+4[/tex]

Here we do not get a factor of [tex]\dfrac{1}{4}[/tex].

Hence, option B is incorrect.

C)

[tex]y=7\times (0.5)^x[/tex]

when x=a

[tex]y=7\times (0.5)^a[/tex]

when x'=a+2

[tex]y=7\times (0.5)^{a+2}\\\\y=7\times (0.5)^a\times (0.5)^2\\\\y=y\times 0.25\\\\\dfrac{y'}{y}=0.25[/tex]

Hence we get a factor of [tex]\dfrac{1}{4}=0.25[/tex]

Hence, option C is correct.

D)

[tex]y=\dfrac{1}{2}x-4[/tex]

when x=a

[tex]y=\dfrac{1}{2}a-4[/tex]

when x'=a+2

[tex]y'=\dfrac{1}{2}(a+2)-4\\\\y'=\dfrac{1}{2}a+1-4\\\\y'=y+1[/tex]

Here also we did not get a factor of [tex]\dfrac{1}{4}[/tex].

Hence, option D is incorrect.

Hence, the function is:

[tex]y=7\times (0.5)^x[/tex]

Hence, option C is correct.