Respuesta :

Answer:

According to the expression written here, it simplifies to [tex]9x^2[/tex]

Or

[tex]x^\frac{4}{3}[/tex]

Step-by-step explanation:

The expression [tex]3\sqrt{x^2}*3\sqrt{x^2}[/tex] simplifies by multiplying like terms 3*3 and [tex]\sqrt{x^2}*\sqrt{x^2}[/tex]. This means it becomes:

[tex]3\sqrt{x^2}*3\sqrt{x^2}   = 9 \sqrt{x^4}[/tex]

A square root removes any terms inside which is a perfect square. The perfect square [tex]x^4 = x^2x^2[/tex]. This means the expression [tex]9\sqrt{x^4} =9x^2[/tex]

OR

If the expression is [tex]\sqrt[3]{x^2} *\sqrt[3]{x^2} =\sqrt[3]{x^4}=x^\frac{4}{3}[/tex] since a radical can be written with a fractional exponent.