Respuesta :

Answer:

The equivalent expression is [tex]\Rightarrow -16+37i[/tex]    

A is correct

Step-by-step explanation:

 We are given two complex number and need to multiply it. To find equivalent fraction.

[tex](4+7i)(3+4i)[/tex]

Using Binomial product property: (a+b)(c+d)=ab+ad+bc+bd

[tex]\Rightarrow (4+7i)(3+4i)[/tex]

[tex]\Rightarrow 4(3)+4(4i)+7i(3)+7i(4i)[/tex]

[tex]\Rightarrow 12+16i+21i+28i^2[/tex]

Combine the like term and simplify

[tex]\Rightarrow 12-28+37i[/tex]           [tex]\because \ \ i^2=-1[/tex]

[tex]\Rightarrow -16+37i[/tex]    

Hence, The equivalent expression is [tex]\Rightarrow -16+37i[/tex]    

Answer:

Choice A is correct answer.

Step-by-step explanation:

Given expression is :

(4+7i)(3+4i)

We have to find the product of two binomials.

Multiplying each term of first binomial to each term of second binomial,we get

4(3+4i)+7i(3+4i)

4(3)+4(4i)+7i(3)+7(4i)

12+16i+21i+27i²

Using the definition of  i, i² = -1

12+16i+21i +27 (-1)

12+16i+21i-28

Gathering like terms,we get

12-28+16i+21i

Adding like terms, we get

-16+37i   Which is the answer.