Respuesta :
Answer:
The equivalent expression is [tex]\Rightarrow -16+37i[/tex]
A is correct
Step-by-step explanation:
We are given two complex number and need to multiply it. To find equivalent fraction.
[tex](4+7i)(3+4i)[/tex]
Using Binomial product property: (a+b)(c+d)=ab+ad+bc+bd
[tex]\Rightarrow (4+7i)(3+4i)[/tex]
[tex]\Rightarrow 4(3)+4(4i)+7i(3)+7i(4i)[/tex]
[tex]\Rightarrow 12+16i+21i+28i^2[/tex]
Combine the like term and simplify
[tex]\Rightarrow 12-28+37i[/tex] [tex]\because \ \ i^2=-1[/tex]
[tex]\Rightarrow -16+37i[/tex]
Hence, The equivalent expression is [tex]\Rightarrow -16+37i[/tex]
Answer:
Choice A is correct answer.
Step-by-step explanation:
Given expression is :
(4+7i)(3+4i)
We have to find the product of two binomials.
Multiplying each term of first binomial to each term of second binomial,we get
4(3+4i)+7i(3+4i)
4(3)+4(4i)+7i(3)+7(4i)
12+16i+21i+27i²
Using the definition of i, i² = -1
12+16i+21i +27 (-1)
12+16i+21i-28
Gathering like terms,we get
12-28+16i+21i
Adding like terms, we get
-16+37i Which is the answer.