Respuesta :
Answer:
The other sides of triangles are 8.72 in and 8.72 in
Step-by-step explanation:
In a triangle ABC. Please find the attachment for figure.
[tex]\angle A=70^{\circ}[/tex]
[tex]\angle B=\angle C=55^{\circ}[/tex]
Side BC=a = 10 in
Using sine law of trigonometry,
[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]
Substitute the given value into formula.
[tex]\dfrac{10}{\sin 70}=\dfrac{b}{\sin 55}=\dfrac{c}{\sin 55}[/tex]
[tex]\dfrac{10}{\sin 70}=\dfrac{b}{\sin 55}[/tex]
Cross multiply and we get
[tex]b=\sin 55\times \dfrac{10}{\sin 70}[/tex]
[tex]b=8.72[/tex] in
It is a isosceles triangle. Therefore, b=c=8.72 in
Hence, The other sides of triangles are 8.72 in and 8.72 in
