an isosceles triangle has angle measures of 55, 55, and 70. the side across the 70 degree angle is 10 inches long. how long are the other sides?

Respuesta :

Answer:

The other sides of triangles are 8.72 in and 8.72 in

Step-by-step explanation:

 In a triangle ABC. Please find the attachment for figure.

[tex]\angle A=70^{\circ}[/tex]

[tex]\angle B=\angle C=55^{\circ}[/tex]

Side BC=a = 10 in

Using sine law of trigonometry,

[tex]\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}[/tex]

Substitute the given value into formula.

[tex]\dfrac{10}{\sin 70}=\dfrac{b}{\sin 55}=\dfrac{c}{\sin 55}[/tex]

[tex]\dfrac{10}{\sin 70}=\dfrac{b}{\sin 55}[/tex]

Cross multiply and we get

[tex]b=\sin 55\times \dfrac{10}{\sin 70}[/tex]

[tex]b=8.72[/tex] in

It is a isosceles triangle. Therefore, b=c=8.72 in

Hence, The other sides of triangles are 8.72 in and 8.72 in

Ver imagen isyllus

Answer:

8.72 A P E X

Step-by-step explanation: