Answer:
Simplified expression is [tex]\frac{9p^{2}+10p+10}{3p(p-2)}[/tex]
Step-by-step explanation:
In this question the two fractions are [tex]\frac{4p+3}{p-2}[/tex] and [tex]\frac{3p+5}{3p}[/tex]
Now Henry subtracts first fraction from the second.
[tex]=\frac{4p+3}{p-2}-\frac{3p+5}{3p}[/tex]
[tex]=\frac{(4p+3)3p-(3p+5)(p-2)}{3p(p-2)}[/tex]
[tex]=\frac{12p^{2}+9p-(3p^{2}+5p-6p-10)}{3p(p-2)}[/tex]
[tex]=\frac{12p^{2}+9p-3p^{2}+p+10}{3p(p-2)}[/tex]
[tex]=\frac{9p^{2}+10p+10}{3p(p-2)}[/tex]
So the simplified difference is [tex]\frac{9p^{2}+10p+10}{3p(p-2)}[/tex]