contestada

In the diagram below, MNPQ is a parallelogram whose diagonals are perpendicular. Prove: MNPQ is a rhombus.

In the diagram below MNPQ is a parallelogram whose diagonals are perpendicular Prove MNPQ is a rhombus class=

Respuesta :

Answer:

Given : MNPQ is a parallelogram whose diagonals are perpendicular.

To prove :  MNPQ is a rhombus.

Proof:

In parallelogram MNPQ,

R is the intersection point of the diagonals MP and NQ( shown in below diagram)

[tex]\implies MR\cong RP[/tex] (Because, the diagonals of parallelogram bisects each other)

[tex]\angle MRQ\cong \angle QRP[/tex] (Right angles )

[tex]QR\cong QR[/tex]  (Reflexive)

Thus, By SAS postulate of congruence,

[tex]\triangle MRQ\cong \triangle PRQ[/tex]

By CPCTC,

[tex]MQ\cong QP[/tex]

Similarly,

We can prove, [tex]\triangle MRN\cong \triangle PRN[/tex]

By CPCTC,

[tex]MN\cong NP[/tex]

But, By the definition of parallelogram,

[tex]MN\cong QP[/tex] and [tex]MQ\cong NP[/tex]

⇒ [tex]MN\cong NP\cong PQ\cong MQ[/tex]

All four side of parallelogram MNQP are congruent.

Parallelogram MNPQ is a rhombus.

Hence, proved.

Ver imagen parmesanchilliwack