Answer:
[tex]10,922\frac{2}{3}\ mm^{3}[/tex]
Step-by-step explanation:
we know that
The volume of a square pyramid is equal to
[tex]V=\frac{1}{3}b^{2}h[/tex]
where
b is the length side of the base
h is the height of the pyramid
In this problem we have
[tex]b=32\ mm[/tex]
[tex]h=32\ mm[/tex]
substitute
[tex]V=\frac{1}{3}(32^{2})(32)=(32,768/3)\ mm^{3}[/tex]
Convert to mixed number
[tex]\frac{32,768}{3}=\frac{32,766}{3} +\frac{2}{3} =10,922\frac{2}{3}\ mm^{3}[/tex]