Select the correct answer. Which point lies on a circle with a radius of 5 units and center at P(6, 1)? A. Q(1, 11) B. R(2, 4) C. S(4, -4) D. T(9, -2)

Respuesta :

Answer:

T(9,-2)

Step-by-step explanation:

The circle has radius 5 units and center P(6,1).

The equation of this circle is

[tex](x-6)^2+(y-1)^2=5^2[/tex]

[tex](x-6)^2+(y-1)^2=25[/tex]

If Q(1,11) lies on this circle, then it must satisfy its equation.

[tex](1-6)^2+(11-1)^2=25[/tex]

[tex](-5)^2+(10)^2=25[/tex]

[tex]25+100=25[/tex], this statement is false.

If R(2,4) lies on this circle, then it must satisfy its equation.

[tex](2-6)^2+(4-1)^2=25[/tex]

[tex](-4)^2+(3)^2=25[/tex]

[tex]16+9=25[/tex], this statement is false.

If S(4,-4) lies on this circle, then it must satisfy its equation.

[tex](4-6)^2+(-4-1)^2=25[/tex]

[tex](-2)^2+(-5)^2=25[/tex]

[tex]4+25=25[/tex], this statement is false.

If T(9,-2) lies on this circle, then it must satisfy its equation.

[tex](9-6)^2+(-2-1)^2=25[/tex]

[tex](4)^2+(-3)^2=25[/tex]

[tex]16+9=25[/tex], this statement is TRUE.

The correct answer is D

Answer:

Option B)

R(2,4)

Step-by-step explanation:

Given that P(6,1) is the center of the circle.

Let us find each point distance from P if equal to 5 units, then the point lies on the circle

PQ =[tex]\sqrt{(1-6)^2+(11-1)^2} =\sqrt{125} \\=5\sqrt{3}[/tex]

PR = [tex]\sqrt{(2-6)^2+(4-1)^2} =\sqrt{25} =5[/tex]

PS =[tex]\sqrt{(4-6)^2+(-4-1)^2} \\=\sqrt{29}[/tex]

PT =[tex]\sqrt{(9-6)^2+(-2-1)^2} \\=\sqrt{18} \\=3\sqrt{2}[/tex]

We see that only R is having a distance of 5 units from P.

Hence R lies on the circle

Option B)

R(2,4)