Respuesta :

Answer:

see explanation

Step-by-step explanation:

12

Since the denominators are like, add the numerators leaving the denominator

= [tex]\frac{x+4+x-1}{x-2}[/tex]

= [tex]\frac{2x+3}{x-2}[/tex]

15

We require the denominators to be like before we can add.

factor x² - 4 as a difference of squares

x² - 4 = (x + 2)(x - 2)

Expressing as

[tex]\frac{x^2-6x}{x+2}[/tex] + [tex]\frac{2x-12}{(x+2)(x-2)}[/tex]

multiply the numerator/denominator of the first fraction by (x - 2)

= [tex]\frac{(x-2)(x^2-6x)}{(x+2)(x-2)}[/tex] + [tex]\frac{2x-12}{(x+2)(x-2)}[/tex]

Expand and simplify the numerators, leaving the denominator

= [tex]\frac{x^3-6x^2-2x^2+12x+2x-12}{(x+2)(x-2)}[/tex]

= [tex]\frac{x^3-8x^2+14x-12}{(x+2)(x-2)}[/tex]