If the pattern continues how many cups of milk does George need to make 6 batches of muffins

Answer:
see explanation
Step-by-step explanation:
If we consider the differences between consecutive terms, that is
[tex]\frac{3}{4}[/tex] - [tex]\frac{3}{8}[/tex] = [tex]\frac{3}{8}[/tex]
1 [tex]\frac{1}{8}[/tex] - [tex]\frac{3}{4}[/tex] = [tex]\frac{3}{8}[/tex]
1 [tex]\frac{1}{2}[/tex] - 1 [tex]\frac{1}{8}[/tex] = [tex]\frac{3}{8}[/tex]
To obtain the next term in the pattern add [tex]\frac{3}{8}[/tex] to the previous term.
batches = 5 ⇒ milk = 1 [tex]\frac{1}{2}[/tex] + [tex]\frac{3}{8}[/tex] = 1 [tex]\frac{7}{8}[/tex]
batches = 6 ⇒ milk = 1 [tex]\frac{7}{8}[/tex] + [tex]\frac{3}{8}[/tex] = 2 [tex]\frac{1}{4}[/tex]