Respuesta :
Answer:
[tex]\frac{x}{y}=\frac{5}{6}[/tex]
Step-by-step explanation:
we have
[tex]\frac{3x-y}{6x+2y}=\frac{3}{14}[/tex]
Multiply in cross
[tex]\frac{3x-y}{6x+2y}=\frac{3}{14}\\ \\3(6x+2y)=14( 3x-y)\\ \\18x+6y=42x-14y\\ \\42x-18x=6y+14y\\ \\24x=20y\\ \\\frac{x}{y}=\frac{20}{24}\\ \\\frac{x}{y}=\frac{5}{6}[/tex]
Answer:
[tex]x:y=5:6[/tex]
Step-by-step explanation:
The given equation is
[tex](3x-y):(6x+2y)=3:14[/tex]
We change the ratios into fractions to obtain;
[tex]\frac{(3x-y)}{6x+2y}=\frac{3}{14}[/tex]
We cross multiply to obtain;
[tex]14(3x-y)=3(6x+2y)[/tex]
We expand the brackets to obtain;
[tex]42x-14y=18x+6y[/tex]
We group similar terms to obtain;
[tex]42x-18x=6y+14y[/tex]
Simplify;
[tex]24x=20y[/tex]
Divide both sides by [tex]24y[/tex] to obtain;
[tex]\frac{24x}{24y}=\frac{20y}{24y}[/tex]
This implies that;
[tex]\frac{x}{y}=\frac{5}{6}[/tex]
Therefore
[tex]x:y=5:6[/tex]