Respuesta :

Answer:

[tex]\frac{x}{y}=\frac{5}{6}[/tex]

Step-by-step explanation:

we have

[tex]\frac{3x-y}{6x+2y}=\frac{3}{14}[/tex]

Multiply in cross

[tex]\frac{3x-y}{6x+2y}=\frac{3}{14}\\ \\3(6x+2y)=14( 3x-y)\\ \\18x+6y=42x-14y\\ \\42x-18x=6y+14y\\ \\24x=20y\\ \\\frac{x}{y}=\frac{20}{24}\\ \\\frac{x}{y}=\frac{5}{6}[/tex]

Answer:

[tex]x:y=5:6[/tex]

Step-by-step explanation:

The given equation is

[tex](3x-y):(6x+2y)=3:14[/tex]

We change the ratios into fractions to obtain;

[tex]\frac{(3x-y)}{6x+2y}=\frac{3}{14}[/tex]

We cross multiply to obtain;

[tex]14(3x-y)=3(6x+2y)[/tex]

We expand the brackets to obtain;

[tex]42x-14y=18x+6y[/tex]

We group similar terms to obtain;

[tex]42x-18x=6y+14y[/tex]

Simplify;

[tex]24x=20y[/tex]

Divide both sides by [tex]24y[/tex] to obtain;

[tex]\frac{24x}{24y}=\frac{20y}{24y}[/tex]

This implies that;

[tex]\frac{x}{y}=\frac{5}{6}[/tex]

Therefore

[tex]x:y=5:6[/tex]