Use a half-angle identity to find the exact value of cos15 .
a.
(sqrt2+sqrt3)/2
c.
(sqrt2-sqrt3)/2
b.
sqrt2+sqrt3
d.
sqrt2-sqrt3

Respuesta :

Answer:

Option a. [tex]\frac{1}{2} \sqrt{2+\sqrt{3} }[/tex]

Step-by-step explanation:

In this question we have to find out the exact value of cos 15 by half angle identity.

As we know that [tex]cos(\frac{x}{2} ) = \sqrt{\frac{1+cosx}{2} }[/tex] is the half angle identity.

From half this identity we can write cos15 as

[tex]cos15 = cos\frac{30}{2}[/tex] = [tex]\sqrt{\frac{1+cos30}{2} }[/tex]

cos 15 = [tex]\sqrt{\frac{1+\frac{\sqrt{3} }{2} }{2} }[/tex]

          = [tex]\sqrt{\frac{\frac{\sqrt{3}+2}{2} }{2} } = \sqrt{(\frac{\sqrt{3}+2 }{2})(\frac{1}{2})}[/tex]

          = [tex]\sqrt{\frac{\sqrt{3}+2 }{4} } = [tex]\frac{1}{2} \sqrt{2+\sqrt{3} }[/tex]

So Option a.[tex]\frac{1}{2} \sqrt{2+\sqrt{3} }[/tex]  is the right option.