Answer:
[tex]S_7=6554[/tex]
Step-by-step explanation:
The given series is [tex]2-8+32-...[/tex]
The first term of the sequence is
[tex]a_1=2[/tex]
There is a common ratio of
[tex]r=-4[/tex]
The sum of the first n terms of a geometric sequence is given by the formula;
[tex]S_n=\frac{a_1(1-r^n)}{1-r}[/tex]
We want to find the first seven terms so [tex]n=7[/tex]
We substitute the given values into the formula to obtain;
[tex]S_7=\frac{2(1-(-4)^7)}{1--4}[/tex]
[tex]S_7=\frac{2(1--16384)}{1--4}[/tex]
[tex]S_7=\frac{2(16385)}{5}[/tex]
[tex]S_7=2(3277)[/tex]
[tex]S_7=6554[/tex]
The correct answer is A