Respuesta :
Answer:
[tex]\large\boxed{\dfrac{49}{53}-\dfrac{14}{53}i}[/tex]
Step-by-step explanation:
[tex]\text{Use}\\\\i=\sqrt{-1}\to i^2=-1\\\\(a-b)(a+b)=a^2-b^2\to(a-bi)(a+bi)=a^2+b^2\\\\\text{distributive property}\ a(b+c)=ab+ac\\---------------------\\\\\dfrac{-7i}{2-7i}=\dfrac{-7i}{2-7i}\cdot\dfrac{2+7i}{2+7i}=\dfrac{-7i(2+7i)}{2^2+7^2}=\dfrac{(-7i)(2)+(-7i)(7i)}{4+49}\\\\=\dfrac{-14i-49i^2}{53}=\dfrac{-14i-49(-1)}{53}=\dfrac{-14i+49}{53}\\\\=\dfrac{49}{53}-\dfrac{14}{53}i[/tex]
Answer:
Write the following quotient in the form a+bi.
-7i/2-7i
Step-by-step explanation: