Respuesta :

Answer:

Part a) [tex]m<CED=64\°[/tex]

Part b) [tex]m<ACD=124\°[/tex]

Step-by-step explanation:

step 1

Find the measure of angle ACB

we know that

The sum of the measures of interior angle of a triangle must be equal to [tex]180\°[/tex]

so

In the triangle ABC

[tex]m<ACB+93\°+31\°=180\°[/tex]

[tex]m<ACB+124\°=180\°[/tex]

[tex]m<ACB=180\°-124\°=56\°[/tex]

step 2

Find the measure of angle ACD

we know that

[tex]m<ACD+m<ACB=180\°[/tex] -------> by supplementary angles

we have

[tex]m<ACB=56\°[/tex]

substitute

[tex]m<ACD+56\°=180\°[/tex]

[tex]m<ACD=180\°-56\°=124\°[/tex]

step 3

Find the measure of angle CED

we know that

m<DCE=m<ACB ------> by vertical angles

so

[tex]m<DCE=56\°[/tex]

Remember that

The sum of the measures of interior angle of a triangle must be equal to [tex]180\°[/tex]

so

In the triangle CDE

[tex]56\°+60\°+m<CED=180\°[/tex]

[tex]116\°+m<CED=180\°[/tex]

[tex]m<CED=180\°-116\°=64\°[/tex]