Respuesta :

Answer:

(A)

Step-by-step explanation:

The given trigonometric ratio is :

[tex]sin\frac{4{\pi}}{3}[/tex]

On solving this, we get

[tex]sin\frac{4{\pi}}{3}[/tex]

=[tex]sin240^{{\circ}}[/tex]

=[tex]sin(180+60)[/tex]

=[tex]-sin60^{{\circ}}[/tex]

=[tex]-\frac{\sqrt{3}}{2}[/tex]

(A) The given trigonometric ratio is :

[tex]cos\frac{5{\pi}}{6}[/tex]

=[tex]cos150^{{\circ}}[/tex]

=[tex]cos(180-30)[/tex]

=[tex]-cos30^{{\circ}}[/tex]

=[tex]-\frac{\sqrt{3}}{2}[/tex]

Which is equivalent to the given trigonometric ratio, thus (A) is correct.

(B) The given trigonometric ratio is :

[tex]cos\frac{5{\pi}}{3}[/tex]

=[tex]cos300^{{\circ}}[/tex]

=[tex]cos(360-60)[/tex]

=[tex]-cos60^{{\circ}}[/tex]

=[tex]-\frac{1}{2}[/tex]

which is not equivalent to the given trigonometric ratio, thus(B) is incorrect.

(C) The given trigonometric ratio is :

[tex]sin\frac{{\pi}}{3}[/tex]

=[tex]\frac{\sqrt{3}}{2}[/tex]

which is not equivalent to the given trigonometric ratio, thus(C) is incorrect.

(D) The given trigonometric ratio is :

[tex]sin\frac{7{\pi}}{6}[/tex]

=[tex]sin210^{{\circ}}[/tex]

=[tex]sin(180+30)[/tex]

=[tex]-sin30^{{\circ}}[/tex]

=[tex]-\frac{1}{2}[/tex]

which is not equivalent to the given trigonometric ratio, thus(D) is incorrect.