Respuesta :
Answer:
Expression sin-1(cos(pi/2)) is equivalent to 0.
Step-by-step explanation:
If we write a term in the the form of y = cos(π/2)
Then the value of y will be = cos (180/2) = cos(90) = 0
Now we know the value of y is = 0
And if we will find the sin value of y then
sin y = sin (0) = 0
⇒ Then [tex]y = sin^{-1}(0) = 0[/tex]
Therefore we can say that the expression sin-1(cos(pi/2)) is equivalent to 0.
Answer:
0 is the answer.
Step-by-step explanation:
Given expression is :
sin⁻¹(cos(π/2))
We have to find the value of above function.
Firstly we find cos(π/2).
Since, we know that π/2 = 90°.
Hence, cos(90°) = 0
Putting the value of cos(90°) in given expression, we get
sin⁻¹(cos(π/2)) = sin⁻¹(0) = 0
Hence, sin⁻¹(cos(π/2)) = 0