Respuesta :

gmany

Answer:

[tex]\large\boxed{3125x\sqrt[5]{x}}[/tex]

Step-by-step explanation:

[tex]\sqrt[n]{a^m}=a^\frac{m}{n}\\\\\sqrt[n]{a^n}=a\\\\\sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\\\\a^n\cdot a^m=a^{n+m}\\---------------------\\\\3125x^\frac{6}{5}=3125\sqrt[5]{x^6}=3125\sqrt[5]{x^{5+1}}=3125\sqrt[5]{x^5\cdot x^1}=3125\sqrt[5]{x^5}\cdot\sqrt[5]{x}\\\\=3125x\sqrt[5]{x}[/tex]

Answer:

3125 x  5th root (x)

Step-by-step explanation:

(3125 ) * x^(6/5)

When we have a some thing to a power greater than 1, we can separate it

We can rewrite 6/5 as 5/5 + 1/5

3125  x^(5/5+1/5)

We know a^ b *a^c = a^(b+c)

3125* x^5/5  * x^ 1/5

x^5/5 is x^1 or just x

3125* x  * x^ 1/5

3125 x  5th root (x)