100 POINTS!! Express in radical form.

Answer:
27 4th root (x^3)
Step-by-step explanation:
(81x) ^ 3/4
We know (ab) ^c = a^c b^c
81 ^ (3/4) * x^3/4
We can rewrite 81 as 3^4
(3^4)^(3/4) * x^3/4
We know that a^b^c = a^ (b*c)
3^(4*3/4) * x^3/4
3^(3) * x^3/4
27 * x^3/4
27 4th root (x^3)
Answer:
[tex]\large\boxed{27\sqrt[4]{x^3}}[/tex]
Step-by-step explanation:
[tex]\sqrt[n]{a^m}=a^\frac{m}{n}\\\\(ab)^n=a^nb^n\\\\\sqrt[n]{a^n}=a\\\\\sqrt[n]{ab}=\sqrt[n]{a}\cdot\sqrt[n]{b}\\--------------------\\\\(81x)^\frac{3}{4}=\sqrt[4]{(81x)^3}=\sqrt[4]{81^3x^3}=\sqrt[4]{81^3}\cdot\sqrt[4]{x^3}=\sqrt[4]{(3^4)^3}\cdot\sqrt[4]{x^3}\\\\=\sqrt[4]{(3^3)^4}\cdot\sqrt[4]{x^3}=3^3\sqrt[4]{x^3}=27\sqrt[4]{x^3}[/tex]