Respuesta :
Answer:
Step-by-step explanation:
Let the points of rhombus be A(2a,0), B(0,2b), C(-2a,0) and D(0,-2b).
Let midpoints of AB be P, then
[tex]P=(\frac{0+2a}{2},\frac{0+2b}{2})=(a,b)[/tex]
Let the mid point of BC be Q, then
[tex]Q=(\frac{-2a+0}{2},\frac{0+2b}{2})=(-a,b)[/tex]
Let the mid point of CD be R, then
[tex]R=(\frac{0-2a}{2},\frac{-2b+0}{2})=(-a,-b)[/tex]
and Let the mid point of DA be S, then
[tex]S=(\frac{2a+0}{2},\frac{0-2b}{2})=(a,-b)[/tex]
It can be seen that P lies in quadrant I, Q in Quadrant II, R in III and S in IV, Further P and Q are the reflections of each other in y-axis, Q and R are the reflections of each other in x-axis,R and S are reflection of each other in y -axis and S and P are reflection of each other in x -axis.
Hence, the mid points of the rhombus forms the rectangle.

The coordinates of the rectangle are (a,b), (-a,b) (-a,-b) and (a,-b)
The coordinate of the rhombus are given as: (2a,0), (0,2b), (-2a,0) and (0,-2b)
We start by calculating the midpoint of consecutive points using the following midpoint formula.
[tex]\mathbf{(x,y) = \frac{1}{2}(x_1 + x_2, y_1 + y_2)}[/tex]
For (2a,0) and (0,2b), we have:
[tex]\mathbf{(x,y) = \frac{1}{2}(2a + 0,0+2b)}[/tex]
[tex]\mathbf{(x,y) = \frac{1}{2}(2a,2b)}[/tex]
Divide
[tex]\mathbf{(x,y) = (a,b)}[/tex]
For (0,2b) and (-2a,0), we have:
[tex]\mathbf{(x,y) = \frac{1}{2}(0 - 2a,2b + 0)}[/tex]
[tex]\mathbf{(x,y) = \frac{1}{2}(-2a,2b)}[/tex]
Divide
[tex]\mathbf{(x,y) =(-a,b)}[/tex]
For (-2a,0) and (0,-2b), we have:
[tex]\mathbf{(x,y) = \frac{1}{2}(-2a + 0,0-2b)}[/tex]
[tex]\mathbf{(x,y) = \frac{1}{2}(-2a ,-2b)}[/tex]
Divide
[tex]\mathbf{(x,y) = (-a ,-b)}[/tex]
For (0,-2b) and (2a,0), we have:
[tex]\mathbf{(x,y) = \frac{1}{2}(0 + 2a,-2b+0)}[/tex]
[tex]\mathbf{(x,y) = \frac{1}{2}(2a,-2b)}[/tex]
Divide
[tex]\mathbf{(x,y) = (a,-b)}[/tex]
Hence, the coordinates of the rectangle are (a,b), (-a,b) (-a,-b) and (a,-b)
Read more about rhombus and midpoints at:
https://brainly.com/question/12796015