salush
contestada

If α and β are the zeros of the polynomials 3y²-8 y + 4, find a quadratic polynomial whose roots are 1/α and 1/β

Respuesta :

Answer:

I think

(3·(1/y)^2 - 8·(1/y) + 4)·y^2

= (3/y^2 - 8/y + 4)·y^2

= 3 - 8y + 4y^2

= 4y^2 - 8y + 3


Answer:

4y² - 8y + 3 = 0

Step-by-step explanation:

given 3y² - 8y + 4 ← in standard form

with a = 3, b = - 8, c = 4

and that α and β are roots of the polynomial, then

α + β = - [tex]\frac{b}{a}[/tex] = [tex]\frac{8}{3}[/tex], and

αβ = [tex]\frac{c}{a}[/tex] = [tex]\frac{4}{3}[/tex]

sum of new roots = [tex]\frac{1}{\alpha }[/tex] + [tex]\frac{1}{\beta }[/tex]

                             = [tex]\frac{\alpha +\beta }{\alpha \beta }[/tex]

                             = [tex]\frac{\frac{8}{3} }{\frac{4}{3} }[/tex] = 2

product of new roots = [tex]\frac{1}{\alpha }[/tex]  × [tex]\frac{1}{\beta }[/tex]

                                   = [tex]\frac{1}{\alpha \beta }[/tex] = [tex]\frac{1}{\frac{4}{3} }[/tex] = [tex]\frac{3}{4}[/tex]

Hence the required equation is

y² - 2y + [tex]\frac{3}{4}[/tex] = 0 ( multiply through by 4 )

4y² - 8y + 3 = 0