PLEASEEEEEE HELP
Given: △ABC, D∈AC
m∠BDC=m∠ABC
AD=7, DC=9
Find: BC, BD/BA

Answer:
Step-by-step explanation:
Given: △ABC, D∈AC , m∠BDC=m∠ABC , AD=7, DC=9.
Solution: Let BC=x, From the given figure and the given information, it can be seen that △ABC is similar to ΔBDC by AA rule, thus using the proportionality theorem, we get
[tex]\frac{AC}{BC}=\frac{BC}{DC}[/tex]
⇒[tex]\frac{16}{x}=\frac{x}{9}[/tex]
⇒[tex]x^{2}=144[/tex]
⇒[tex]x=12[/tex]
⇒BC=12
Now, calculate the similarity scale,
k=[tex]\frac{AC}{BC}[/tex]
=[tex]\frac{16}{12}=\frac{4}{3}[/tex]
Therefore, [tex]\frac{BA}{BD}=\frac{4}{3}[/tex]
⇒[tex]3BA=4BD[/tex]
⇒[tex]BA=\frac{4}{3}BD[/tex]
Similar triangles may or may not have congruent sides
The results are [tex]BC = 12[/tex] and [tex]\frac{BD }{ BA }=\frac{4}{3}[/tex]
The side lengths are given as:
Given that the triangles are similar triangles.
So, we have the following equivalent ratio
[tex]AC : BC = BC : DC[/tex]
Express as fraction
[tex]\frac{AC }{ BC }= \frac{BC }{ DC}[/tex]
Cross multiply
[tex]BC \times BC = AC \times DC[/tex]
Where:
[tex]AC = AD + DC[/tex]
[tex]AC = 7 + 9 = 16[/tex]
So, the equation becomes
[tex]BC \times BC = AC \times DC[/tex]
[tex]BC^2 = 16 \times 9[/tex]
Take square roots of both sides
[tex]BC = 4 \times 3[/tex]
[tex]BC = 12[/tex]
Also, we have the following equivalent ratio
[tex]BD : BA = BC : DC[/tex]
This gives
[tex]BD : BA = 12 :9[/tex]
Express as fraction
[tex]\frac{BD }{ BA }=\frac{ 12}{9}[/tex]
Simplify the fraction
[tex]\frac{BD }{ BA }=\frac{4}{3}[/tex]
Read more about similar triangles at:
https://brainly.com/question/14285697