Respuesta :

Answer:

Option B. [tex]\frac{1}{3x+1}[/tex].

Step-by-step explanation:

The given expression is [tex]\frac{x+2}{x^{3}+2x^{2}-9x-18}\div \frac{3x+1}{x^{2}-9}[/tex]

In this expression we will simplify [tex]\frac{x+2}{x^{3}+2x^{2}-9x-18}[/tex] first.

=[tex]\frac{x+2}{x^{2}(x+2)-9(x+2)}[/tex]

[tex]=\frac{x+2}{(x+2)(x^{2}-9)}[/tex]

[tex]=\frac{1}{x^{2}-9}[/tex]

Now we can rewrite the given expression as

[tex]=\frac{1}{x^{2}-9}\div \frac{3x+1}{x^{2}-9}[/tex]

[tex]=\frac{1}{x^{2}-9}\times \frac{x^{2}-9}{3x+1}[/tex]

[tex]= \frac{1}{3x+1}[/tex]

So option B. [tex]\frac{1}{3x+1}[/tex] is the right answer.