what are the real or imaginary solutions of the polynomial x^4-3x^2=-2x

Answer:
x = 0 or 1 or -2
Step-by-step explanation:
[tex]x^{4} -3x^{2} +2x=0[/tex]
x(x^3-3x+2)=0
x(x-1)^2 * (x+2)0
so x = 0 or 1 or -2
there is no imaginary solutions
x⁴-3x²= -2x
Step-by-step:
x⁴-3x²+2x=0
x*(x³-3x+²)=0
x*(x³-4x+x+2)=0
x*(x*(x²-4)+x+2)=0
x*(x*(x-2)*(x+2)+1)=0
x*(x+2)*(x*(x-2)+1)=0
x*(x+2)*(x²-2x+1)=0
Using a²-2ab + b²=(a-b)², factor the expression.
x*(x+2)*(x-1)²=0
Therefore x=0
Therefore x+2=0
(X-1)²=0
X=0
X=-2
X=1
Therefore
x1 is -2
x2 is 0
x3 is 1.