Respuesta :

Answer:

Step-by-step explanation:

Given: △ACM, m∠C=90°, CP ⊥ AM , AC:CM=3:4, MP-AP=1.

Solution: Let AC=3k and CM=4k, then from △ACM, we get

[tex](AM)^{2}=(AC)^{2}+(CM)^{2}[/tex]

[tex](AM)^{2}=(3k)^{2}+(4k)^{2}[/tex]

[tex](AM)^{2}=25k^{2}[/tex]

[tex]AM=5k[/tex]

Now, AM=MP+AP⇒5k=MP+AP    (1)

It is also given that MP-AP=1         (2)

Therefore, from (1) and (2),

(MP+AP)(MP-AP)=5k

[tex](MP)^{2}-(AP)^{2}=5k[/tex]

Add and subtract [tex](CP)^{2}[/tex] on left side

[tex](MP)^{2}+(CP)^{2}-(CP)^{2}-(AP)^{2}=5k[/tex]

[tex]((MP)^{2}+(CP)^{2})-((CP)^{2}-(AP)^{2})=5k[/tex]           (3)

But, since CP ⊥ AM, Δ CMP and Δ CAP are right triangles. Therefore,

[tex](MP)^{2}+(CP)^{2}=(CM)^{2}[/tex]

[tex](CP)^{2}+(AP)^{2}=(AC)^{2}[/tex]

Thus, Equation (3) becomes,

[tex](CM)^{2}-(AC)^2=5k[/tex]

[tex](4k)^{2}-(3k)^2=5k[/tex]

[tex]7k^{2}=5k[/tex]

[tex]k=\frac{5}{7}[/tex]

Thus, AM=5k

AM=[tex]\frac{25}{7}[/tex]