For any positive number b not equal to 1 and any number or variable n, evaluate the following expression

b^{log_{b}n } =

A. n
B. Log b
C. Log n
D. b

Respuesta :

The answer to this question is


A.n


Answer:

[tex]b^{\log_{b}n }=n[/tex]

Step-by-step explanation:

we are given

[tex]b^{\log_{b}n }[/tex]

Let [tex]b^{\log_{b}n } =y[/tex]

[tex]y= b^{\log_{b}n }[/tex]

taking log on both hand sides

[tex]\log y = \log (b^{\log_{b}n })[/tex]

[tex]\log y = {\log_{b}n} \log b[/tex]

[tex]{\log_{b}n}=\frac{\log n}{\log b}[/tex]

[tex]\log y=\frac{\log n}{\log b}\times \log b[/tex]

[tex]\log y = \log n[/tex]

[tex]y=n[/tex]

Hence our expression is equal to n