Answer : The mass of [tex]CO_2[/tex] formed will be, 157.52 grams.
Solution : Given,
Mass of [tex]C_2H_6[/tex] = 53.8 g
Molar mass of [tex]C_2H_6[/tex] = 30 g/mole
Molar mass of [tex]CO_2[/tex] = 44 g/mole
First we have to calculate the moles of [tex]C_2H_6[/tex].
[tex]\text{Moles of }C_2H_6=\frac{\text{Mass of }C_2H_6}{\text{Molar mass of }C_2H_6}=\frac{53.8g}{30g/mole}=1.79moles[/tex]
Now we have to calculate the moles of [tex]CO_2[/tex].
The given balanced chemical reaction is,
[tex]2C_2H_6+7O_2\rightarrow 6H_2O+4CO_2[/tex]
From the balanced reaction, we conclude that
As, 2 moles of [tex]C_2H_6[/tex] react to give 4 moles of [tex]CO_2[/tex]
So, 1.79 moles of [tex]C_2H_6[/tex] react to give [tex]\frac{4}{2}\times 1.79=3.58[/tex] moles of [tex]CO_2[/tex]
Now we have to calculate the mass of [tex]CO_2[/tex].
[tex]\text{Mass of }CO_2=\text{Moles of }CO_2\times \text{Molar mass of }CO_2[/tex]
[tex]\text{Mass of }CO_2=(3.58mole)\times (44g/mole)=157.52g[/tex]
Therefore, the mass of [tex]CO_2[/tex] formed will be, 157.52 grams.