Respuesta :
[tex]\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} y=a(x- h)^2+ k\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{}{ h},\stackrel{}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ g(x)=2(x-\stackrel{h}{3})^2\stackrel{k}{-8}~\hspace{10em}\stackrel{vertex}{(3,-8)}[/tex]
Answer:
(3,-8)
Step-by-step explanation:
The parabola given in the form
y =a(x-h)^2 +k
where (h,k) is the vertex of the function
y =2(x−3)^ 2 −8
So (3, -8) is the vertex of the function