Respuesta :

Answer:

Simplified form is [tex]-(\frac{8x^{3}}{3x-2})[/tex].

Step-by-step explanation:

The given expression is [tex]8x^{3}\div \frac{6x^{2}-4x}{-2x}[/tex]

We can rewrite the given expression as [tex]= 8x^{3}\times (-\frac{2x}{{6x^{2}-4x}})[/tex]

Further simplification of the expression gives [tex]=\frac{-16x^{4}}{6x^{2}-4x}[/tex]

[tex]=\frac{-16x^{4}}{2x(3x-2)}[/tex]

[tex]=-(\frac{8x^{3}}{3x-2})[/tex]

So the simplified of the given expression is [tex]=[tex]-(\frac{8x^{3}}{3x-2})[/tex]

Answer:

[tex] -\frac {8x^3} {3x-2} [/tex]

Step-by-step explanation:

We are given the following expression and we are two divide these two terms:

[tex] \frac {8x^3} {\frac {6x^2 - 4x} {-2x} } [/tex]

To simplify this, we will take the reciprocal of the fraction in the denominator of this expression to change it to multiplication.

[tex] 8x^3 [/tex] × [tex] \frac {-2x} {6x^2 - 4x} [/tex]

Taking the common terms out to get:

[tex]8x^3[/tex] × [tex]\frac{-2x}{2x(3x-2)}[/tex]

Cancelling the like terms to get:

[tex]-\frac{8x^3}{3x-2}[/tex]