Respuesta :
Answer:
Simplified form is [tex]-(\frac{8x^{3}}{3x-2})[/tex].
Step-by-step explanation:
The given expression is [tex]8x^{3}\div \frac{6x^{2}-4x}{-2x}[/tex]
We can rewrite the given expression as [tex]= 8x^{3}\times (-\frac{2x}{{6x^{2}-4x}})[/tex]
Further simplification of the expression gives [tex]=\frac{-16x^{4}}{6x^{2}-4x}[/tex]
[tex]=\frac{-16x^{4}}{2x(3x-2)}[/tex]
[tex]=-(\frac{8x^{3}}{3x-2})[/tex]
So the simplified of the given expression is [tex]=[tex]-(\frac{8x^{3}}{3x-2})[/tex]
Answer:
[tex] -\frac {8x^3} {3x-2} [/tex]
Step-by-step explanation:
We are given the following expression and we are two divide these two terms:
[tex] \frac {8x^3} {\frac {6x^2 - 4x} {-2x} } [/tex]
To simplify this, we will take the reciprocal of the fraction in the denominator of this expression to change it to multiplication.
[tex] 8x^3 [/tex] × [tex] \frac {-2x} {6x^2 - 4x} [/tex]
Taking the common terms out to get:
[tex]8x^3[/tex] × [tex]\frac{-2x}{2x(3x-2)}[/tex]
Cancelling the like terms to get:
[tex]-\frac{8x^3}{3x-2}[/tex]