Determine whether each function has an inverse function. If it does, find the inverse function and state any restrictions on its domain.

1. [tex]f(x) = |x-6|[/tex]

2. [tex]f(x) = \sqrt[]{6 -x^{2} }[/tex]

3. [tex]h(x) = \frac{x+4}{3x-5}[/tex]

Respuesta :

QUESTION 1

The given function is;

[tex]f(x) = |x - 6| [/tex]

This is an absolute value function.

For this function to have an inverse it must be a one-to-one function.

This absolute value function is not one-to-one
because

[tex]f( 5)=1[/tex]
and

[tex]f(7) = 1[/tex]

Since this function has more than one x-value mapping onto one y-value, it is not one-to-one and cannot have an inverse.

You can see from the graph that this function cannot pass the horizontal line test.

QUESTION 2

The given function is

[tex]f(x) = \sqrt{6 - {x}^{2} } [/tex]

Let

[tex]y= \sqrt{6 - {x}^{2} } [/tex]

This implies that,

[tex] {y}^{2} + {x}^{2} = 6[/tex]

We see clearly that, this function is a circle that is centered at the origin.

This means that,

[tex]f(x) = \sqrt{6 - {x}^{2} } [/tex]

is a semicircle.

This function will not pass the horizontal line test and hence does not have an inverse.

QUESTION 3

The given function is

[tex]h(x) = \frac{x+4}{3x-5}[/tex]

If we put

[tex]h(a) = h(b)[/tex]

We obtain,

[tex]\frac{a+4}{3a-5} = \frac{b+4}{3b-5}[/tex]

[tex](a + 4)(3b - 5) = (b + 4)(3a - 5)[/tex]

[tex]3ab - 5a + 12b - 20 = 3ab - 5b + 12a - 20[/tex]

[tex] - 17a = - 17b[/tex]

[tex]a = b[/tex]

This shows that h(x) has an inverse because it is one-to-one.

Let

[tex]y=\frac{x+4}{3x-5}[/tex]

We interchange x and y to get,

[tex]x=\frac{y+4}{3y-5}[/tex]

[tex]x(3y - 5) = y + 4[/tex]

[tex]3xy - 5x = y + 4[/tex]

Group like terms to get,

[tex]3xy - y = 5x + 4[/tex]

Factor to get,

[tex]y(3x - 1) = 5x + 4[/tex]
Solve for y,

[tex]y = \frac{5x + 4}{3x - 1} [/tex]

Hence

[tex] {f}^{ - 1}(x) = \frac{5x + 4}{3x - 1} [/tex]

where

[tex]x \ne \frac{1}{3} [/tex]
Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis
Ver imagen kudzordzifrancis