Use [tex]f(x) = x^{2} +1[/tex] with domain [0, ∞] and [tex]g(x) = \sqrt[]{x-4}[/tex] to find each of the following.

1. [tex][f^{-1}[/tex] ° [tex]g^{-1}](x)[/tex]

2. [tex][f[/tex] ° [tex]g]^{-1} (x)[/tex]

Respuesta :

Answer:

1. [tex](f^{-1}og^{-1}) (x) = \sqrt{x^{2}+3 }[/tex]

2. [tex](f o g)^{-1} (x) = x + 3[/tex]

Step-by-step explanation:

f(x) = [tex]x^{2}[/tex] + 1

putting f (x) = y

y = [tex]x^{2}[/tex] + 1

[tex]x^{2}[/tex] = ( y-1)

x =  [tex](y - 1)^{\frac{1}{2} }[/tex]

Therefore = [tex]f^{-1}(x)[/tex] = [tex](x-1)^{\frac{1}{2} }[/tex]

g (x) = [tex]\sqrt{x-4}[/tex]

putting g(x) = y

y = [tex]\sqrt{x-4}[/tex]

[tex]y^{2}[/tex] = (x-4)

x = [tex]y^{2} + 4[/tex]

[tex]g^{-1} (x) = x^{2} + 4[/tex]

( [tex]f^{-1}[/tex] o [tex]g^{-1}) x[/tex]

[tex](g^{-1}x -1)^{\frac{1}{2} } = \sqrt{x^{2} +3}[/tex]

2. (f o g)(x) = (√x-4)²+1) = x-4+1

(f o g)(x) = x-3

Let y = x - 3

x = y + 3

Or [tex](f o g)^{-1}(x) = x + 3[/tex]