Solve for y hdgkgsydkydutskgxtisit

You said X = (5y+1) / (y-2)
Multiply each side by (y-2):
X(y-2) = (5y+1)
Eliminate parentheses:
Xy - 2X = 5y + 1
Add 2X to each side:
Xy = 5y + 1 + 2X
Subtract 5y from each side:
(X-5)y = 1 + 2X
Divide each side by (X-5):
y = (1+2X) / (X-5)
Answer:
[tex]\large\boxed{y=\dfrac{2x+1}{x-5}}[/tex]
Step-by-step explanation:
[tex]x=\dfrac{5y+1}{y-2}\\\\\dfrac{x}{1}=\dfrac{5y+1}{y-2}\qquad\text{cross multiply}\\\\(x)(y-2)=(1)(5y+1)\qquad\text{use the distributive property}\\\\xy-2x=5y+1\qquad\text{add 2x to both sides}\\\\xy=5y+2x+1\qquad\text{subtract 5y from both sides}\\\\xy-5y=2x+1\qquad\text{distributive}\\\\y(x-5)=2x+1\qquad\text{divide both sides by}\ (x-5)\\\\y=\dfrac{2x+1}{x-5}[/tex]