contestada

(please hurry) (Thank you)


The area of a rectangular knitted blanket is 22 x squared minus 7 x minus 2. What are the possible dimensions of the​ blanket? Use factoring.

The possible dimensions of the blanket are

nothing.

Respuesta :

Answer:

The possible length and width are (2x-1) and (11x-2).

Step-by-step explanation:

We are given that,

Area of the rectangular blanket = [tex]22x^{2}-7x-2[/tex].

As, the area of a rectangle = Length × Width.

We need to find the factors of the polynomial [tex]22x^{2}-7x-2[/tex].

The solution of the equation [tex]ax^{2}+bx+c=0[/tex] is [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex].

So, the solution of [tex]22x^{2}-7x-2=0[/tex] is given by,

[tex]x=\frac{7\pm \sqrt{(-7)^2-4\times 22\times (-2)}}{2\times 22}[/tex]

i.e. [tex]x=\frac{7\pm \sqrt{49+176}}{44}[/tex]

i.e. [tex]x=\frac{7\pm \sqrt{225}}{44}[/tex]

i.e. [tex]x=\frac{7\pm 15}{44}[/tex]

i.e. [tex]x=\frac{7+15}{44}[/tex] and [tex]x=\frac{7-15}{44}[/tex]

i.e. [tex]x=\frac{22}{44}[/tex] and [tex]x=\frac{8}{44}[/tex]

i.e. [tex]x=\frac{1}{2}[/tex] and [tex]x=\frac{2}{11}[/tex]

Thus, the factors of the corresponding polynomial are (2x-1) and (11x-2).

That is,

Area of a rectangle = [tex]22x^{2}-7x-2[/tex] = (2x-1) × (11x-2).

Hence, the possible length and width are (2x-1) and (11x-2).