Respuesta :

Answer:

The equation of the circle is

[tex](x-5)^{2} +(y+4)^{2}=100[/tex]

Step-by-step explanation:

we know that

The equation of the circle in center radius form is equal to

[tex](x-h)^{2} +(y-k)^{2}=r^{2}[/tex]

In this problem we have

[tex](h,k)=(5,-4)[/tex]

so

[tex](x-5)^{2} +(y+4)^{2}=r^{2}[/tex]

To find  the radius substitute the value of x and the value of y of the point [tex](-3,2)[/tex] in the equation

[tex](-3-5)^{2} +(2+4)^{2}=r^{2}[/tex]

[tex](-8)^{2} +(6)^{2}=r^{2}[/tex]

[tex]100=r^{2}[/tex]

[tex]r=10\ units[/tex]

substitute

[tex](x-5)^{2} +(y+4)^{2}=10^{2}[/tex]

[tex](x-5)^{2} +(y+4)^{2}=100[/tex]

see the attached figure to better understand the problem

Ver imagen calculista