Answer:
[tex]y = -\frac{3}{4}x-\frac{1}{4}[/tex]
Step-by-step explanation:
The equation for a linear function found from two given points is: y = mx + b, where m = slope and b = y-intercept. You can find slope from slope formula:
[tex]\frac{(y_{2}-y_{1})}{(x_{2}-x_{1})}[/tex]
Given points (5, -4) and (-3, 2):
[tex]\frac{(2-(-4))}{(-3-5)}=\frac{6}{-8}=-\frac{3}{4}[/tex]
Using the value m = [tex]-\frac{3}{4}[/tex] and the point (5, -4) for x and y:
y = mx + b
-4 = 5(-3/4) + b
-4 = -15/4 + b
-4 = -3.75 + b
-1/4 = b
[tex]y = -\frac{3}{4}x-\frac{1}{4}[/tex]