Respuesta :

Answer:

LK=12    

Step-by-step explanation:

From the given figure, HI=7 and LH=9, and we know that

[tex](KH)^{2}=(IH)(HL)[/tex]

[tex](KH)^{2}=7{\times}9[/tex]

[tex](KH)^{2}=63[/tex]                             (1)

Now, from ΔKHL, we have

[tex](OH)^{2}=(OK)(OL)[/tex]

and from ΔOKH,

[tex](KH)^{2}=(OH)^{2}+(OK)^2[/tex]

[tex](OK)^2=(KH)^2-(OH)^2[/tex]

[tex](OK)^2=63-(OK)(OL)[/tex]

[tex](OK)^2+(OK)(OL)=63[/tex]

[tex]OK(OK+OL)=63[/tex]

[tex]OK(KL)=63[/tex]                                 (2)

Also, ΔIKL is similar to ΔOHL, therefore

[tex]\frac{OL}{KL}=\frac{9}{16}[/tex]

[tex]\frac{KL-OK}{KL}=\frac{9}{16}[/tex]

[tex]\frac{KL-OK}{KL}=\frac{9}{16}[/tex]

[tex]1-\frac{OK}{KL}=\frac{9}{16}[/tex]

[tex]\frac{7}{16}=\frac{OK}{KL}[/tex]

Using equation (2), we get

[tex]\frac{7}{16}=\frac{63}{(KL)^2}[/tex]

[tex](KL)^2=\frac{1008}{7}[/tex]

[tex](KL)^2=144[/tex]

[tex]KL=12[/tex]

Thus, the value of LK is 12.