A central angle of a circle measures 1.5 radians. If the radius of the circle is 3 cm, what is the area of the related sector?
A) 4.55 cm2
B) 6.75 cm2
C) 7.38 cm2
D) 8.24 cm2

Respuesta :

Answer:

Option B. [tex]6.75\ cm^{2}[/tex]

Step-by-step explanation:

we know that

The area of a circle is equal to

[tex]A=\pi r^{2}[/tex]

we have

[tex]r=3\ cm[/tex]

substitute

[tex]A=\pi (3^{2})=9 \pi\ cm^{2}[/tex]

Remember that

[tex]2\pi[/tex] radians subtends the complete circle of area [tex]9 \pi\ cm^{2}[/tex]

so

by proportion

Find the area of the related sector for a central angle of [tex]1.5[/tex] radians

Let

x------> the area of the related sector

[tex]\frac{9 \pi}{2\pi}\frac{cm^{2}}{radians} =\frac{x}{1.5}\frac{cm^{2}}{radians}\\ \\x=9*1.5/2\\ \\x= 6.75\ cm^{2}[/tex]