Respuesta :

Answer:

621 /629

Step-by-step explanation:

The formula for sin (x+y) is sin x cosy + cos x sin y.

                                                      opposite side

If sin y  12/37 (which is equal to ----------------------- )  we can find the length

                                                        hypotenuse

of the adjacent side as follows.  Representing the adjacent side by x, we get

37^2 = x^2 + 12^2 (following the Pythagorean Theorem).

Then 1369 = x^2 + 144, or x^2 = 1225, so that x must be +√1225, or +35.

Thus, the cosine of y is (adj side) / (hypo) = 35/37.

                                                    √(17^2 - 8^2)       √225

Similarly, the sine of angle x is -------------------- =  ----------- = 15/17

                                                             17                     17

In summary, sin x = 15/17; cos x = 8/17; sin y = 12/37 and cos y =35/37.

We now substitute these values into the formula

sin (x+y) is sin x cosy + cos x sin y:

sin (x+y) = (15/17)(35/37) + (8/17)(12/37)

                      525               96               621

              = --------------- + -------------- = ------------ = 621 /629

                      629              629              629

The exact value is 621/629.

How to calculate the exact value of sin(x+y)?

sin (x+y) = sin x cos y+sin y cos x

If cos x = 8/17 and sin y = 12/32

and [tex]$\cos ^{2} y+\sin ^{2} y=1$[/tex]

To calculate sin x and cos y

[tex]$\sin ^{2} x=1-\cos ^{2} x=1-\left(\frac{8}{17}\right)^{2}=\frac{225}{17^{2}}$[/tex]

[tex]$\sin x=\frac{15}{17}$[/tex]

[tex]$\cos ^{2} y=1-\sin ^{2} y=1-\left(\frac{12}{37}\right)^{2}=\frac{1225}{37^{2}}$[/tex]

[tex]$\cos y=\frac{35}{37}$[/tex]

so,

[tex]$\sin (x+y)=\frac{15}{17} \cdot \frac{35}{37}+\frac{12}{37} \cdot \frac{8}{17}=\frac{621}{629}$[/tex]

Therefore the exact value is 621/629.

To learn more about the exact value, refer:

https://brainly.com/question/1603720

#SPJ2