Respuesta :

Answer: [tex]\frac{1}{4}[/tex]

Step-by-step explanation:

You can reduce the fractions, then:

[tex]\frac{64}{64}=1[/tex]

[tex]\frac{9}{12}=\frac{3}{4}[/tex]

[tex]\frac{6}{12}=\frac{3}{6}=\frac{1}{2}[/tex]

Rewrite them as following:

[tex]1,\frac{3}{4},\frac{1}{2}[/tex]

If you subtract the first number and the second number, you obtain:

[tex]1-\frac{3}{4}=\frac{1}{4}[/tex]

 If you subtract the second number and the second number, you obtain:

[tex]\frac{3}{4}-\frac{1}{2}=\frac{1}{4}[/tex]

Therefore, you must subtract [tex]\frac{1}{2}[/tex] and [tex]\frac{1}{4}[/tex] to obtain the number asked. Then, this is:

[tex]\frac{1}{2}-\frac{1}{4}=\frac{1}{4}[/tex]

Answer:

[tex]\texttt{The number following is }\frac{1}{4}[/tex]

Step-by-step explanation:

Series is

         [tex]\frac{64}{64},\frac{9}{12},\frac{6}{12}.....[/tex]

Let us simplify

         [tex]\frac{64}{64},\frac{9}{12},\frac{6}{12}.....=1,\frac{3}{4},\frac{1}{2}.....[/tex]

So this is arithmetic progression with 1 as first term and [tex]-\frac{1}{4}[/tex] as common difference.

Next term of AP will be [tex]\frac{1}{2}-\frac{1}{4}=\frac{1}{4}[/tex]

[tex]\texttt{The number following is }\frac{1}{4}[/tex]