Respuesta :

[tex]Answer: \\GK\: bisects\: \widehat{FGH} \Rightarrow \widehat{FGK} =\widehat{HGK} \\ \widehat{FGH} = \widehat{FGK} + \widehat{HGK} = 2\widehat{FGK} \\ \Leftrightarrow 104 =2( 7w + 3 ) \\ \Leftrightarrow 14w + 6 = 104 \\ \Leftrightarrow 14w = 98\Leftrightarrow w = 7[/tex]

Answer:

The value of w = 7

Step-by-step explanation:

It is given that, an angle FGH, and GK bisect the <FGH

Then, m<FGK = mHGK

Also given that, <FGK = 7w + 3 and m<FGH = 104°

we have to find the value of w

To find the value of w

m<FGH = m<FGK + mHGK = 104°

m<FGK = mHGK

m<FGH = 104/2 = 52

<FGK = 7w + 3  = 52

7w + 3  = 52

7w = 52 - 3 = 49

w = 49/7 = 7

Therefore the value of w = 7