Yuii
contestada

PLEASE HELP ASAP!!! CORRECT ANSWER ONLY PLEASE!!!

f s(x) = 2x^2 + 3x - 4, and t(x) = x + 4 then s(x) · t(x) =

PLEASE HELP ASAP CORRECT ANSWER ONLY PLEASE f sx 2x2 3x 4 and tx x 4 then sx tx class=

Respuesta :

gmany

Answer:

[tex]\large\boxed{A.\ 2x^3+11x^2+8x-16}[/tex]

Step-by-step explanation:

[tex]s(x)=2x^2+3x-4,\ t(x)=x+4\\\\s(x)\cdot t(x)\to\text{substitute:}\\\\s(x)\cdot t(x)=(2x^2+3x-4)(x+4)\\\\\text{Use FOIL:}\ (a+b)(c+d)=ac+ad+bc+bd\\\\s(x)\cdot t(x)=(2x^2)(x)+(2x^2)(4)+(3x)(x)+(3x)(4)+(-4)(x)+(-4)(4)\\\\=2x^3+8x^2+3x^2+12x-4x-16\\\\\text{Combine like terms}\\\\s(x)\cdot t(x)=2x^3+(8x^2+3x^2)+(12x-4x)-16\\\\s(x)\cdot t(x)=2x^3+11x^2+8x-16[/tex]

Answer:   A) 2x³ + 11x² + 8x - 16

Step-by-step explanation:

s(x) · t(x) = (2x² + 3x - 4)(x + 4)

             = x(2x² + 3x - 4) + 4(2x² + 3x - 4)

             = 2x³ + 3x² - 4x   + 8x² + 12x - 16

             = 2x³ + 3x² - 4x   + 8x² + 12x - 16

             = 2x³ + 11x² + 8x - 16