Respuesta :

Answer:

The correct answer is C.

Step-by-step explanation:

The given equation is;

[tex]r=\frac{1}{1-\sin(\theta)}[/tex]

This implies that;

[tex]r(1-\sin(\theta)=1[/tex]

[tex]r-r\sin(\theta)=1[/tex]

Let us write in Cartesian coordinates by substituting;

[tex]r=\sqrt{x^2+y^2} ,y=r\sin(\theta)[/tex]

[tex]\sqrt{x^2+y^2}-y=1[/tex]

[tex]\sqrt{x^2+y^2}=y+1[/tex]

Square both sides;

[tex](\sqrt{x^2+y^2})^2=(y+1)^2[/tex]

This implies that;

[tex]x^2+y^2=y^2+2y+1[/tex]

[tex]x^2=2y+1[/tex]

[tex]y=\frac{1}{2}x^2-\frac{1}{2}[/tex]

This is an equation of a parabola that opens upwards with a  y-intercept of [tex]-\frac{1}{2}[/tex].

The correct choice is C

Answer:

c on edge

Step-by-step explanation: