Respuesta :

Answer:

a. [tex]r=1+2\cos(\theta)[/tex]

Step-by-step explanation:

The curve

[tex]r=1+2\cos(\theta)[/tex]

is not a conic.

Convert to rectangular coordinates.

First multiply through by r.

[tex]r^2=r+2r\cos(\theta)[/tex]

Substitute [tex]r^2=x^2+y^2[/tex]

and

[tex]x=r\cos(\theta)[/tex]

[tex]x^2+y^2=\sqrt{x^2+y^2}+2x[/tex]

We can see clearly that this is not a conic.

[tex]r=1+2\cos(\theta)[/tex] is an equation of a cardioid.

[tex]r=3[/tex] is a circle.

[tex]r=\frac{1}{1+\sin(\theta)}[/tex] is a parabola.

[tex]r=\frac{1}{2-\cos(\theta)}[/tex] is an ellipse.

Answer: a) r=1+2cos(theta)

Step-by-step explanation:

Correct on edge.