Respuesta :

Answer:

Expression gives the perimeter = 4x√17

Step-by-step explanation:

∵ The diagonals of the rhombus to each other and

   bisects each other

∴ Half the longest diagonal = 8x/2 = 4x

∴ Half the shortest diagonal = 2x/2 = x

Use Pythagoras theorem to find the length of the side of the rhombus

∴ The length of the side = √[(4x)² + (x)²] = √[16x² + x²] = √(17x²)

∴ S = x√17

∵ Perimeter of the rhombus = 4 × S

∴ P = 4 × x√17 = 4x√17

The perimeter of a rhombus is the sum of its side lengths.

The perimeter of the rhombus is [tex]\mathbf{ 4x\sqrt{17}}[/tex]

The given parameters are:

[tex]\mathbf{d_1 = 2x}[/tex]

[tex]\mathbf{d_2 = 8x}[/tex]

The perimeter is calculated as:

[tex]\mathbf{P = 4 \times \sqrt{(\frac{d_1}{2})^2 + (\frac{d_2}{2})^2}}[/tex]

So, we have:

[tex]\mathbf{P = 4\sqrt{(\frac{2x}{2})^2 + (\frac{8x}{2})^2}}[/tex]

[tex]\mathbf{P =4 \sqrt{(x)^2 + (4x)^2}}[/tex]

Evaluate all exponents

[tex]\mathbf{P = 4\sqrt{x^2 + 16x^2}}[/tex]

[tex]\mathbf{P = 4\sqrt{17x^2}}[/tex]

Take the square root of x^2

[tex]\mathbf{P = 4x\sqrt{17}}[/tex]

Hence, the perimeter of the rhombus is [tex]\mathbf{ 4x\sqrt{17}}[/tex]

Read more about perimeters at:

https://brainly.com/question/6465134