In Exercises use synthetic division to perform the indicated division. Write the polynomial in the form
p(x) = d(x)q(x) + r(x)

[tex](3-4x-2x^{2})[/tex] ÷ [tex](x+1)[/tex]

Respuesta :

The polynomial p(x) in the form of p(x) = d(x)q(x) + r(x) is

p(x) = (x + 1)(-2x - 2) + 5

Step-by-step explanation:

(3 - 4x - 2x²) ÷ (x + 1) ⇒ rearrange the terms from greatest power to smallest power

(-2x² - 4x + 3) ÷ (x + 1)

In the synthetic division we use the coefficient of the dividend  

with one factor of the function

Equate the divisor by 0 to find the value of x

∵ x + 1 = 0 ⇒ x = -1

Step 1 : Write down the coefficients of the f(x) , put x = -1 at the left  

                         -1        -2       -4         3

                                  _____________

Step 2 : Bring down the first coefficient to the bottom row.

                        -1        -2        -4         3

                                  ________________

                                    -2

Step 3 : Multiply it by -1, and carry the result into the next column.

                       -1        -2        -4         3

                                  _____2__________

                                  -2

Step 4 : Add down the column

                       -1        -2       -4        3

                                  _____2__________

                                  -2       -2

Step 5 : Multiply it by -1, and carry the result into the next column

                       -1        -2        -4        3

                                  _____2____2____

                                   -2      -2

Step 6 : Add down the column

                      -1        -2        -4        3

                                 _____2____2______

                                 -2       -2        5  

∴ The quotient is (-2x - 2) and the remainder is 5

The factors of (-2x² - 4x + 3) are:

d(x) = (x + 1) and q(x) = (-2x - 2)

The remainder r(x) = 5

The polynomial p(x) in the form of p(x) = d(x)q(x) + r(x) is

p(x) = (x + 1)(-2x - 2) + 5

Learn more:

You can learn more about polynomial in brainly.com/question/12700460

#LearnwithBrainly