In Exercises use synthetic division to perform the indicated division. Write the polynomial in the form
p(x) = d(x)q(x) + r(x)

[tex](4x^{2} -5x+3)[/tex] ÷ [tex](x+3)[/tex]

Respuesta :

The polynomial in the form p(x) = d(x)q(x) + r(x) is

p(x) = (x + 3)(4x - 17) + 54

Step-by-step explanation:

In synthetic division we equate the divisor by 0 to find the value of x

x + 3 = 0 ⇒ x = -3

Step 1 : Write down the coefficients of the f(x) , put x = -3 at the left  

                         -3        4      -5      3  

                                  ____________

Step 2 : Bring down the first coefficient to the bottom row.

                        -3        4       -5       3

                                  ________________

                                    4

Step 3 : Multiply it by -3, and carry the result into the next column.

                       -3        4       -5        3

                                  ____-12________

                                    4

Step 4 : Add down the column

                       -3        4       -5        3

                                  ____-12________

                                   4      -17

Step 5 : Multiply it by -3, and carry the result into the next column

                       -3        4        -5        3

                                  _____-12___51_____

                                   4        -17

Step 6 : Add down the column

                      -3        4         -5         3

                                 _____-12____51___

                                  4        -17         54

The quotient is (4x - 17) and the remainder is 54

The factors of (4x² - 5x + 3) are:

d(x) = (x + 3) and q(x) = (4x - 17)

The remainder r(x) = 54

The polynomial in the form p(x) = d(x)q(x) + r(x) is

p(x) = (x + 3)(4x - 17) + 54

Learn more:

You can learn more about polynomial in brainly.com/question/12700460

#LearnwithBrainly